3.1062 \(\int \frac{A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sec ^{\frac{3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=350 \[ \frac{2 \sqrt{\sec (c+d x)} \left (a^2 (A+3 C)-6 a b B+8 A b^2\right ) \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \text{EllipticF}\left (\frac{1}{2} (c+d x),\frac{2 a}{a+b}\right )}{3 a^3 d \sqrt{a+b \sec (c+d x)}}-\frac{2 \sin (c+d x) \left (a^2 (-(A-3 C))-3 a b B+4 A b^2\right ) \sqrt{a+b \sec (c+d x)}}{3 a^2 d \left (a^2-b^2\right ) \sqrt{\sec (c+d x)}}+\frac{2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{a d \left (a^2-b^2\right ) \sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{2 \left (-a^2 (5 A b-3 b C)+3 a^3 B-6 a b^2 B+8 A b^3\right ) \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{3 a^3 d \left (a^2-b^2\right ) \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}}} \]

[Out]

(2*(8*A*b^2 - 6*a*b*B + a^2*(A + 3*C))*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)
]*Sqrt[Sec[c + d*x]])/(3*a^3*d*Sqrt[a + b*Sec[c + d*x]]) + (2*(8*A*b^3 + 3*a^3*B - 6*a*b^2*B - a^2*(5*A*b - 3*
b*C))*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(3*a^3*(a^2 - b^2)*d*Sqrt[(b + a*Cos[c +
 d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) + (2*(A*b^2 - a*(b*B - a*C))*Sin[c + d*x])/(a*(a^2 - b^2)*d*Sqrt[Sec[c + d
*x]]*Sqrt[a + b*Sec[c + d*x]]) - (2*(4*A*b^2 - 3*a*b*B - a^2*(A - 3*C))*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])
/(3*a^2*(a^2 - b^2)*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.943284, antiderivative size = 350, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 9, integrand size = 45, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {4100, 4104, 4035, 3856, 2655, 2653, 3858, 2663, 2661} \[ -\frac{2 \sin (c+d x) \left (a^2 (-(A-3 C))-3 a b B+4 A b^2\right ) \sqrt{a+b \sec (c+d x)}}{3 a^2 d \left (a^2-b^2\right ) \sqrt{\sec (c+d x)}}+\frac{2 \sin (c+d x) \left (A b^2-a (b B-a C)\right )}{a d \left (a^2-b^2\right ) \sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}}+\frac{2 \sqrt{\sec (c+d x)} \left (a^2 (A+3 C)-6 a b B+8 A b^2\right ) \sqrt{\frac{a \cos (c+d x)+b}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{3 a^3 d \sqrt{a+b \sec (c+d x)}}+\frac{2 \left (-a^2 (5 A b-3 b C)+3 a^3 B-6 a b^2 B+8 A b^3\right ) \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{3 a^3 d \left (a^2-b^2\right ) \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sec[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^(3/2)),x]

[Out]

(2*(8*A*b^2 - 6*a*b*B + a^2*(A + 3*C))*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)
]*Sqrt[Sec[c + d*x]])/(3*a^3*d*Sqrt[a + b*Sec[c + d*x]]) + (2*(8*A*b^3 + 3*a^3*B - 6*a*b^2*B - a^2*(5*A*b - 3*
b*C))*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(3*a^3*(a^2 - b^2)*d*Sqrt[(b + a*Cos[c +
 d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) + (2*(A*b^2 - a*(b*B - a*C))*Sin[c + d*x])/(a*(a^2 - b^2)*d*Sqrt[Sec[c + d
*x]]*Sqrt[a + b*Sec[c + d*x]]) - (2*(4*A*b^2 - 3*a*b*B - a^2*(A - 3*C))*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])
/(3*a^2*(a^2 - b^2)*d*Sqrt[Sec[c + d*x]])

Rule 4100

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[((A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*(a +
 b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n)/(a*f*(m + 1)*(a^2 - b^2)), x] + Dist[1/(a*(m + 1)*(a^2 - b^2)), I
nt[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[a*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C)*
(m + n + 1) - a*(A*b - a*B + b*C)*(m + 1)*Csc[e + f*x] + (A*b^2 - a*b*B + a^2*C)*(m + n + 2)*Csc[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] &&  !(ILtQ[m + 1/2, 0] &
& ILtQ[n, 0])

Rule 4104

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m +
1)*(d*Csc[e + f*x])^n)/(a*f*n), x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[
a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ
[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rule 4035

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \frac{A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sec ^{\frac{3}{2}}(c+d x) (a+b \sec (c+d x))^{3/2}} \, dx &=\frac{2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{2 \int \frac{\frac{1}{2} \left (4 A b^2-3 a b B-a^2 (A-3 C)\right )+\frac{1}{2} a (A b-a B+b C) \sec (c+d x)-\left (A b^2-a (b B-a C)\right ) \sec ^2(c+d x)}{\sec ^{\frac{3}{2}}(c+d x) \sqrt{a+b \sec (c+d x)}} \, dx}{a \left (a^2-b^2\right )}\\ &=\frac{2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{2 \left (4 A b^2-3 a b B-a^2 (A-3 C)\right ) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \sqrt{\sec (c+d x)}}+\frac{4 \int \frac{\frac{1}{4} \left (8 A b^3+3 a^3 B-6 a b^2 B-a^2 (5 A b-3 b C)\right )+\frac{1}{4} a \left (2 A b^2-3 a b B+a^2 (A+3 C)\right ) \sec (c+d x)}{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}} \, dx}{3 a^2 \left (a^2-b^2\right )}\\ &=\frac{2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{2 \left (4 A b^2-3 a b B-a^2 (A-3 C)\right ) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \sqrt{\sec (c+d x)}}+\frac{\left (8 A b^2-6 a b B+a^2 (A+3 C)\right ) \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+b \sec (c+d x)}} \, dx}{3 a^3}+\frac{\left (8 A b^3+3 a^3 B-6 a b^2 B-a^2 (5 A b-3 b C)\right ) \int \frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{\sec (c+d x)}} \, dx}{3 a^3 \left (a^2-b^2\right )}\\ &=\frac{2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{2 \left (4 A b^2-3 a b B-a^2 (A-3 C)\right ) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \sqrt{\sec (c+d x)}}+\frac{\left (\left (8 A b^2-6 a b B+a^2 (A+3 C)\right ) \sqrt{b+a \cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{b+a \cos (c+d x)}} \, dx}{3 a^3 \sqrt{a+b \sec (c+d x)}}+\frac{\left (\left (8 A b^3+3 a^3 B-6 a b^2 B-a^2 (5 A b-3 b C)\right ) \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{b+a \cos (c+d x)} \, dx}{3 a^3 \left (a^2-b^2\right ) \sqrt{b+a \cos (c+d x)} \sqrt{\sec (c+d x)}}\\ &=\frac{2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{2 \left (4 A b^2-3 a b B-a^2 (A-3 C)\right ) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \sqrt{\sec (c+d x)}}+\frac{\left (\left (8 A b^2-6 a b B+a^2 (A+3 C)\right ) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}}} \, dx}{3 a^3 \sqrt{a+b \sec (c+d x)}}+\frac{\left (\left (8 A b^3+3 a^3 B-6 a b^2 B-a^2 (5 A b-3 b C)\right ) \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}} \, dx}{3 a^3 \left (a^2-b^2\right ) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}}\\ &=\frac{2 \left (8 A b^2-6 a b B+a^2 (A+3 C)\right ) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{\sec (c+d x)}}{3 a^3 d \sqrt{a+b \sec (c+d x)}}+\frac{2 \left (8 A b^3+3 a^3 B-6 a b^2 B-a^2 (5 A b-3 b C)\right ) E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{a+b \sec (c+d x)}}{3 a^3 \left (a^2-b^2\right ) d \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}}+\frac{2 \left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}}-\frac{2 \left (4 A b^2-3 a b B-a^2 (A-3 C)\right ) \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 7.56605, size = 4557, normalized size = 13.02 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sec[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^(3/2)),x]

[Out]

((b + a*Cos[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((-2*(-5*a^2*A*b + 11*A*b^3 + 3*a^3*B - 9*a*b^
2*B + 6*a^2*b*C - 5*a^2*A*b*Cos[2*c] + 5*A*b^3*Cos[2*c] + 3*a^3*B*Cos[2*c] - 3*a*b^2*B*Cos[2*c])*Csc[c]*Sec[c]
)/(3*a^3*(a^2 - b^2)*d) + (4*A*Cos[d*x]*Sin[c])/(3*a^2*d) + (4*A*Cos[c]*Sin[d*x])/(3*a^2*d) + (4*Sec[c]*(A*b^4
*Sin[c] - a*b^3*B*Sin[c] + a^2*b^2*C*Sin[c] - a*A*b^3*Sin[d*x] + a^2*b^2*B*Sin[d*x] - a^3*b*C*Sin[d*x]))/(a^3*
(a^2 - b^2)*d*(b + a*Cos[c + d*x]))))/((A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[Sec[c + d*x]]*(a
 + b*Sec[c + d*x])^(3/2)) - (4*A*AppellF1[1/2, 1/2, 1/2, 3/2, (Csc[c]*(b - a*Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x
 - ArcTan[Cot[c]]]))/(a*Sqrt[1 + Cot[c]^2]*(1 + (b*Csc[c])/(a*Sqrt[1 + Cot[c]^2]))), (Csc[c]*(b - a*Sqrt[1 + C
ot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]]))/(a*Sqrt[1 + Cot[c]^2]*(-1 + (b*Csc[c])/(a*Sqrt[1 + Cot[c]^2])))]*(
b + a*Cos[c + d*x])^(3/2)*Csc[c]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[(a*Sqr
t[1 + Cot[c]^2] - a*Sqrt[1 + Cot[c]^2]*Sin[d*x - ArcTan[Cot[c]]])/(a*Sqrt[1 + Cot[c]^2] - b*Csc[c])]*Sqrt[(a*S
qrt[1 + Cot[c]^2] + a*Sqrt[1 + Cot[c]^2]*Sin[d*x - ArcTan[Cot[c]]])/(a*Sqrt[1 + Cot[c]^2] + b*Csc[c])]*Sqrt[b
- a*Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]]])/(3*(a^2 - b^2)*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos
[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^(3/2)) - (8*A*b^2*AppellF1[1/2, 1/2,
 1/2, 3/2, (Csc[c]*(b - a*Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]]))/(a*Sqrt[1 + Cot[c]^2]*(1 + (b*
Csc[c])/(a*Sqrt[1 + Cot[c]^2]))), (Csc[c]*(b - a*Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]]))/(a*Sqrt
[1 + Cot[c]^2]*(-1 + (b*Csc[c])/(a*Sqrt[1 + Cot[c]^2])))]*(b + a*Cos[c + d*x])^(3/2)*Csc[c]*(A + B*Sec[c + d*x
] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[(a*Sqrt[1 + Cot[c]^2] - a*Sqrt[1 + Cot[c]^2]*Sin[d*x - Ar
cTan[Cot[c]]])/(a*Sqrt[1 + Cot[c]^2] - b*Csc[c])]*Sqrt[(a*Sqrt[1 + Cot[c]^2] + a*Sqrt[1 + Cot[c]^2]*Sin[d*x -
ArcTan[Cot[c]]])/(a*Sqrt[1 + Cot[c]^2] + b*Csc[c])]*Sqrt[b - a*Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[
c]]]])/(3*a^2*(a^2 - b^2)*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*Sqrt[Sec[c +
d*x]]*(a + b*Sec[c + d*x])^(3/2)) + (4*b*B*AppellF1[1/2, 1/2, 1/2, 3/2, (Csc[c]*(b - a*Sqrt[1 + Cot[c]^2]*Sin[
c]*Sin[d*x - ArcTan[Cot[c]]]))/(a*Sqrt[1 + Cot[c]^2]*(1 + (b*Csc[c])/(a*Sqrt[1 + Cot[c]^2]))), (Csc[c]*(b - a*
Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]]))/(a*Sqrt[1 + Cot[c]^2]*(-1 + (b*Csc[c])/(a*Sqrt[1 + Cot[c
]^2])))]*(b + a*Cos[c + d*x])^(3/2)*Csc[c]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*S
qrt[(a*Sqrt[1 + Cot[c]^2] - a*Sqrt[1 + Cot[c]^2]*Sin[d*x - ArcTan[Cot[c]]])/(a*Sqrt[1 + Cot[c]^2] - b*Csc[c])]
*Sqrt[(a*Sqrt[1 + Cot[c]^2] + a*Sqrt[1 + Cot[c]^2]*Sin[d*x - ArcTan[Cot[c]]])/(a*Sqrt[1 + Cot[c]^2] + b*Csc[c]
)]*Sqrt[b - a*Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]]])/(a*(a^2 - b^2)*d*(A + 2*C + 2*B*Cos[c + d*
x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^(3/2)) - (4*C*AppellF1[1/2
, 1/2, 1/2, 3/2, (Csc[c]*(b - a*Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]]))/(a*Sqrt[1 + Cot[c]^2]*(1
 + (b*Csc[c])/(a*Sqrt[1 + Cot[c]^2]))), (Csc[c]*(b - a*Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]]))/(
a*Sqrt[1 + Cot[c]^2]*(-1 + (b*Csc[c])/(a*Sqrt[1 + Cot[c]^2])))]*(b + a*Cos[c + d*x])^(3/2)*Csc[c]*(A + B*Sec[c
 + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[(a*Sqrt[1 + Cot[c]^2] - a*Sqrt[1 + Cot[c]^2]*Sin[d*
x - ArcTan[Cot[c]]])/(a*Sqrt[1 + Cot[c]^2] - b*Csc[c])]*Sqrt[(a*Sqrt[1 + Cot[c]^2] + a*Sqrt[1 + Cot[c]^2]*Sin[
d*x - ArcTan[Cot[c]]])/(a*Sqrt[1 + Cot[c]^2] + b*Csc[c])]*Sqrt[b - a*Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTa
n[Cot[c]]]])/((a^2 - b^2)*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*Sqrt[Sec[c +
d*x]]*(a + b*Sec[c + d*x])^(3/2)) + (10*A*b*(b + a*Cos[c + d*x])^(3/2)*Csc[c]*(A + B*Sec[c + d*x] + C*Sec[c +
d*x]^2)*((AppellF1[-1/2, -1/2, -1/2, 1/2, -((Sec[c]*(b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]
))/(a*Sqrt[1 + Tan[c]^2]*(1 - (b*Sec[c])/(a*Sqrt[1 + Tan[c]^2])))), -((Sec[c]*(b + a*Cos[c]*Cos[d*x + ArcTan[T
an[c]]]*Sqrt[1 + Tan[c]^2]))/(a*Sqrt[1 + Tan[c]^2]*(-1 - (b*Sec[c])/(a*Sqrt[1 + Tan[c]^2]))))]*Sin[d*x + ArcTa
n[Tan[c]]]*Tan[c])/(Sqrt[1 + Tan[c]^2]*Sqrt[(a*Sqrt[1 + Tan[c]^2] - a*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c
]^2])/(b*Sec[c] + a*Sqrt[1 + Tan[c]^2])]*Sqrt[(a*Sqrt[1 + Tan[c]^2] + a*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan
[c]^2])/(-(b*Sec[c]) + a*Sqrt[1 + Tan[c]^2])]*Sqrt[b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]])
 - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*a*Cos[c]*(b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]
]*Sqrt[1 + Tan[c]^2]))/(a^2*Cos[c]^2 + a^2*Sin[c]^2))/Sqrt[b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan
[c]^2]]))/(3*(a^2 - b^2)*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[Sec[c + d*x]]*(a + b*Sec[c +
 d*x])^(3/2)) - (16*A*b^3*(b + a*Cos[c + d*x])^(3/2)*Csc[c]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((AppellF1
[-1/2, -1/2, -1/2, 1/2, -((Sec[c]*(b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]))/(a*Sqrt[1 + Tan
[c]^2]*(1 - (b*Sec[c])/(a*Sqrt[1 + Tan[c]^2])))), -((Sec[c]*(b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + T
an[c]^2]))/(a*Sqrt[1 + Tan[c]^2]*(-1 - (b*Sec[c])/(a*Sqrt[1 + Tan[c]^2]))))]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])
/(Sqrt[1 + Tan[c]^2]*Sqrt[(a*Sqrt[1 + Tan[c]^2] - a*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(b*Sec[c] +
a*Sqrt[1 + Tan[c]^2])]*Sqrt[(a*Sqrt[1 + Tan[c]^2] + a*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(-(b*Sec[c
]) + a*Sqrt[1 + Tan[c]^2])]*Sqrt[b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]) - ((Sin[d*x + Arc
Tan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*a*Cos[c]*(b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^
2]))/(a^2*Cos[c]^2 + a^2*Sin[c]^2))/Sqrt[b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(3*a^2*(
a^2 - b^2)*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^(3/2))
- (2*a*B*(b + a*Cos[c + d*x])^(3/2)*Csc[c]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((AppellF1[-1/2, -1/2, -1/2
, 1/2, -((Sec[c]*(b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]))/(a*Sqrt[1 + Tan[c]^2]*(1 - (b*Se
c[c])/(a*Sqrt[1 + Tan[c]^2])))), -((Sec[c]*(b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]))/(a*Sqr
t[1 + Tan[c]^2]*(-1 - (b*Sec[c])/(a*Sqrt[1 + Tan[c]^2]))))]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 + Tan[c]
^2]*Sqrt[(a*Sqrt[1 + Tan[c]^2] - a*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(b*Sec[c] + a*Sqrt[1 + Tan[c]
^2])]*Sqrt[(a*Sqrt[1 + Tan[c]^2] + a*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(-(b*Sec[c]) + a*Sqrt[1 + T
an[c]^2])]*Sqrt[b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[
c])/Sqrt[1 + Tan[c]^2] + (2*a*Cos[c]*(b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]))/(a^2*Cos[c]^
2 + a^2*Sin[c]^2))/Sqrt[b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/((a^2 - b^2)*d*(A + 2*C +
 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^(3/2)) + (4*b^2*B*(b + a*Cos[c
 + d*x])^(3/2)*Csc[c]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((AppellF1[-1/2, -1/2, -1/2, 1/2, -((Sec[c]*(b +
 a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]))/(a*Sqrt[1 + Tan[c]^2]*(1 - (b*Sec[c])/(a*Sqrt[1 + Tan
[c]^2])))), -((Sec[c]*(b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]))/(a*Sqrt[1 + Tan[c]^2]*(-1 -
 (b*Sec[c])/(a*Sqrt[1 + Tan[c]^2]))))]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 + Tan[c]^2]*Sqrt[(a*Sqrt[1 +
Tan[c]^2] - a*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(b*Sec[c] + a*Sqrt[1 + Tan[c]^2])]*Sqrt[(a*Sqrt[1
+ Tan[c]^2] + a*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(-(b*Sec[c]) + a*Sqrt[1 + Tan[c]^2])]*Sqrt[b + a
*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2
] + (2*a*Cos[c]*(b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]))/(a^2*Cos[c]^2 + a^2*Sin[c]^2))/Sq
rt[b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(a*(a^2 - b^2)*d*(A + 2*C + 2*B*Cos[c + d*x] +
 A*Cos[2*c + 2*d*x])*Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^(3/2)) - (2*b*C*(b + a*Cos[c + d*x])^(3/2)*Csc[c]
*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((AppellF1[-1/2, -1/2, -1/2, 1/2, -((Sec[c]*(b + a*Cos[c]*Cos[d*x + A
rcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]))/(a*Sqrt[1 + Tan[c]^2]*(1 - (b*Sec[c])/(a*Sqrt[1 + Tan[c]^2])))), -((Sec[c]
*(b + a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]))/(a*Sqrt[1 + Tan[c]^2]*(-1 - (b*Sec[c])/(a*Sqrt[1
 + Tan[c]^2]))))]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 + Tan[c]^2]*Sqrt[(a*Sqrt[1 + Tan[c]^2] - a*Cos[d*x
 + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(b*Sec[c] + a*Sqrt[1 + Tan[c]^2])]*Sqrt[(a*Sqrt[1 + Tan[c]^2] + a*Cos[d
*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(-(b*Sec[c]) + a*Sqrt[1 + Tan[c]^2])]*Sqrt[b + a*Cos[c]*Cos[d*x + Arc
Tan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*a*Cos[c]*(b +
a*Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]))/(a^2*Cos[c]^2 + a^2*Sin[c]^2))/Sqrt[b + a*Cos[c]*Cos[d
*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/((a^2 - b^2)*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sq
rt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.404, size = 2733, normalized size = 7.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x)

[Out]

-2/3/d/a^3/(a+b)/((a-b)/(a+b))^(1/2)*(8*A*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-
b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*cos(d*x+c)*a*b^
2+3*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b
)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*sin(d*x+c)+3*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(
1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a
^2*b*sin(d*x+c)+A*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a
*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*cos(d*x+c)*a^3+8*A*(1/(a+b)*(b+a*cos(d*
x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),
(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*cos(d*x+c)*b^3-3*B*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(
-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*cos(d
*x+c)*a^3+3*C*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos
(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*cos(d*x+c)*a^3+6*A*EllipticF((-1+cos(d*x+c)
)*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(
1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+8*A*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))
^(1/2))*a*b^2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-5*A*Elliptic
E((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*
x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-3*B*a^3*((a-b)/(a+b))^(1/2)*cos(d*x+c)-A*((a-b)/(a+b))^(1/2
)*cos(d*x+c)*a^3-8*A*((a-b)/(a+b))^(1/2)*cos(d*x+c)*b^3+8*A*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1
/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b^3*sin(
d*x+c)-5*A*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*
((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*cos(d*x+c)*a^2*b-6*B*EllipticF((-1+cos(d*x+c))
*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(
d*x+c)+1))^(1/2)*sin(d*x+c)*cos(d*x+c)*a^2*b-6*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c
)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*cos(d*x+
c)*a*b^2+3*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c)
)*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*cos(d*x+c)*a^2*b+6*A*EllipticF((-1+cos(d*x+c
))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(co
s(d*x+c)+1))^(1/2)*sin(d*x+c)*cos(d*x+c)*a^2*b+A*cos(d*x+c)^3*((a-b)/(a+b))^(1/2)*a^3+3*B*cos(d*x+c)^2*((a-b)/
(a+b))^(1/2)*a^3+3*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+co
s(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*cos(d*x+c)*a^3-A*a^2*b*((a-b)/(a+b))
^(1/2)+4*A*a*b^2*((a-b)/(a+b))^(1/2)-3*B*a^2*b*((a-b)/(a+b))^(1/2)-6*B*a*b^2*((a-b)/(a+b))^(1/2)+3*C*((a-b)/(a
+b))^(1/2)*a^2*b-4*A*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^2*b-3*B*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/
sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*
sin(d*x+c)+3*C*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+
c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*sin(d*x+c)+A*EllipticF((-1+cos(d*x+c))*((a-b)/(a+
b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+
1))^(1/2)*sin(d*x+c)+8*A*b^3*((a-b)/(a+b))^(1/2)+A*((a-b)/(a+b))^(1/2)*cos(d*x+c)^3*a^2*b-4*A*((a-b)/(a+b))^(1
/2)*cos(d*x+c)^2*a*b^2+3*B*((a-b)/(a+b))^(1/2)*cos(d*x+c)^2*a^2*b+4*A*((a-b)/(a+b))^(1/2)*cos(d*x+c)*a^2*b+6*B
*((a-b)/(a+b))^(1/2)*cos(d*x+c)*a*b^2-3*C*((a-b)/(a+b))^(1/2)*cos(d*x+c)*a^2*b-6*B*EllipticF((-1+cos(d*x+c))*(
(a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(
cos(d*x+c)+1))^(1/2)*sin(d*x+c)-6*B*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1
/2))*a*b^2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c))*((b+a*cos(d*x+
c))/cos(d*x+c))^(1/2)*cos(d*x+c)^2*(1/cos(d*x+c))^(3/2)/sin(d*x+c)/(b+a*cos(d*x+c))

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt{b \sec \left (d x + c\right ) + a} \sqrt{\sec \left (d x + c\right )}}{b^{2} \sec \left (d x + c\right )^{4} + 2 \, a b \sec \left (d x + c\right )^{3} + a^{2} \sec \left (d x + c\right )^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)*sqrt(sec(d*x + c))/(b^2*sec(d*x + c)
^4 + 2*a*b*sec(d*x + c)^3 + a^2*sec(d*x + c)^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/sec(d*x+c)**(3/2)/(a+b*sec(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/((b*sec(d*x + c) + a)^(3/2)*sec(d*x + c)^(3/2)), x)